Annual Water Quality Report is for the period of January 1 to December 31, 2022.
This report is intended to provide you with important information about your drinking water and the efforts made by your water system to provide safe drinking water. The source of drinking water used by the CITY OF HUTCHINS in 2021 was Surface Water (SW) purchased from the City of Dallas (PWS # TX0570004). The City of Dallas obtains surface water from seven sources: the Elm Fork of the Trinity River and lakes Ray Roberts, Lewisville, Grapevine, Ray Hubbard, Tawakoni and Fork.

For more information regarding this report contact:
Name: Robert McWayne, Public Works
Phone: (972) 225-2363

Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al teléfono: (972) 225-6121.

Source of Drinking Water
The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA’s Safe Drinking Water Hotline at 800-426-4791.

Contaminants that may be present in source water include:
- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, order, or color of drinking water, please contact the City Hutchins’ Department of Public Works.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Hutchins is responsible for providing high quality drinking water, but the city cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Information about Source Water Assessments
TCEQ completed an assessment of City of Dallas’ source water and results indicate that some of their sources are susceptible to certain contaminants. TCEQ conducted no source water assessment for the City of Hutchins’ water system.

The sampling requirements for both the City of Dallas and City of Hutchins water systems are based on this susceptibility and previous sample data. Any detections of these contaminants will be found in this Consumer Confidence Report.

Further details about sources and source-water assessments are available in Drinking Water Watch at the following URL: http://dww.tceq.texas.gov/DWW
Public Participation Opportunities: The Public is invited to attend bi-monthly City of Hutchins’ City Council meetings to participate in decisions that may affect the quality of water in the city of Hutchins. The Hutchins City Council currently meets on the 1st and 3rd Mondays of each month at 6:30 p.m. at the Hutchins Community Center (located at 500 W. Hickman Street, Hutchins, TX 75141).

Water Loss: In the water loss audit submitted to the Texas Water Development Board for the time period of January 1, 2021, to December 31, 2021, the City of Hutchins’ system lost an estimated 2.2% of the system input volume. If you have any questions about the water loss audit, please contact the City of Hutchins’ Public Works Department at (972) 225-6121.

Water Quality Test Results

Definitions: The following tables contain scientific terms and measures, some of which may require explanation.

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.

Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: million fibers per liter (a measure of asbestos)
mrem/year: millirems per year (a measure of radiation absorbed by the body)
na: not applicable
NTU: nephelometric turbidity units (a measure of turbidity)
pCi/L: picocuries per liter (a measure of radioactivity)
ppb: micrograms per liter or parts per billion – or one ounce in 7,350,000 gallons of water.
ppm: milligrams per liter or parts per million – or one ounce in 7,350 gallons of water.
ppt: parts per trillion, or nanograms per liter (ng/L)
ppq: parts per quadrillion, or pictograms per liter (pq/L)

Treatment Technique or TT: A required process intended to reduce the level of a contaminant in drinking water.
Disinfectant Residual

<table>
<thead>
<tr>
<th>Type of Disinfectant</th>
<th>Year</th>
<th>Average Level of Disinfectant Residuals</th>
<th>Minimum Level of Disinfectant Residuals</th>
<th>Maximum Level of Disinfectant Residuals</th>
<th>MRDL</th>
<th>MRDLG</th>
<th>Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Chlorine Residual</td>
<td>2022</td>
<td>3.0</td>
<td>1.6</td>
<td>4.2</td>
<td>4.0</td>
<td>ppm</td>
<td>N</td>
<td></td>
<td>Water additive to control microbes.</td>
</tr>
<tr>
<td>Hutchins</td>
<td>2022</td>
<td>3.02</td>
<td>2.75</td>
<td>3.27</td>
<td>4.0</td>
<td>ppm</td>
<td>N</td>
<td></td>
<td>Water additive to control microbes.</td>
</tr>
</tbody>
</table>

Coliform Bacteria

<table>
<thead>
<tr>
<th>Public Water System (PWS)</th>
<th>Maximum Contaminant Level Goal</th>
<th>Total Coliform Maximum Contaminant Level</th>
<th>Highest No. of Positive</th>
<th>Fecal Coliform or E. Coli Maximum Contaminant Level</th>
<th>Total No. of Positive E. Coli or Fecal Coliform Samples</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hutchins</td>
<td>0</td>
<td>1 Positive samples</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>N</td>
<td>Naturally present in the environment.</td>
</tr>
<tr>
<td>Dallas</td>
<td>No more than 5% positive</td>
<td>5% or more of monthly samples</td>
<td>0.8%</td>
<td>-</td>
<td>0</td>
<td>N</td>
<td>Naturally present in the environment.</td>
</tr>
</tbody>
</table>

Regulated Contaminants Detected

Lead and Copper

<table>
<thead>
<tr>
<th>Lead and Copper</th>
<th>Date Sampled</th>
<th>MCLG</th>
<th>Action Level (AL)</th>
<th>90th Percentile</th>
<th># Sites Over AL</th>
<th>Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper Hutchins</td>
<td>9/13/2022</td>
<td>1.3</td>
<td>1.3</td>
<td>0.0494</td>
<td>0</td>
<td>ppm</td>
<td>N</td>
<td>Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.</td>
</tr>
<tr>
<td>Copper Dallas</td>
<td>2021</td>
<td>1.3</td>
<td>1.3</td>
<td>0.26</td>
<td>0</td>
<td>ppm</td>
<td>N</td>
<td>Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.</td>
</tr>
<tr>
<td>Lead Hutchins</td>
<td>09/13/2022</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>ppb</td>
<td>N</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits.</td>
</tr>
<tr>
<td>Lead Dallas</td>
<td>2021</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>ppb</td>
<td>N</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits.</td>
</tr>
</tbody>
</table>

Regulated Contaminants:

Disinfectants and Disinfections By-Products

- **Haloacetic Acids (HAAS)**
 - **Hutchins**
 - Collection Date: 2022
 - MCLG: 6.4
 - Action Level: 3.3 – 6.4
 - Violations: No goal for the total.
 - Units: 60 ppm
 - Likely Source of Contamination: By-product of drinking water disinfection.

- **Total Trihalomethanes (TTHM)**
 - **Hutchins**
 - Collection Date: 2022
 - MCLG: 16.6
 - Action Level: 9.51 – 16.6
 - Violations: No goal for the total.
 - Units: 80 ppb
 - Likely Source of Contamination: By-product of drinking water disinfection.

Inorganic Contaminants

- **Barium**
 - **Dallas**
 - Collection Date: 2022
 - MCLG: 0.033
 - Action Level: 0.032 – 0.033
 - Violations: 2
 - Units: 2 ppm
 - Likely Source of Contamination: Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits.

- **Bromate**
 - **Dallas**
 - Collection Date: 2022
 - MCLG: 6.9
 - Action Level: 0 – 27.2
 - Violations: 0
 - Units: 10^ ppb
 - Likely Source of Contamination: By-product of drinking water distribution.

- **Cyanide**
 - **Dallas**
 - Collection Date: 2022
 - MCLG: 192.0
 - Action Level: 139 – 192
 - Violations: 200
 - Units: 200 ppb
 - Likely Source of Contamination: Discharge from steel/metal factories; discharge from plastic and fertilizer factories.

- **Chromium (Total)**
 - **Dallas**
 - Collection Date: 2020
 - MCLG: 1.80
 - Action Level: <1 – 1.80
 - Violations: 100
 - Units: 100 ppb
 - Likely Source of Contamination: Discharge from steel and pulp mills; erosion of natural deposits.

- **Fluoride**
 - **Dallas**
 - Collection Date: 2022
 - MCLG: 0.602
 - Action Level: 0.520 – 0.647
 - Violations: 4
 - Units: 4 ppm
 - Likely Source of Contamination: Erosion of natural deposits; Water additive which...
<table>
<thead>
<tr>
<th>Unregulated Contaminants</th>
<th>Collection Date</th>
<th>Highest Level Detected</th>
<th>Range of Levels Detected</th>
<th>MCLG</th>
<th>MCL</th>
<th>Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloroform</td>
<td>2022</td>
<td>1.2</td>
<td><1.00 – 1.2</td>
<td>70</td>
<td>N/A</td>
<td>ppb</td>
<td>N</td>
<td>Byproduct of drinking water disinfection.</td>
</tr>
<tr>
<td>Bromoform</td>
<td>2022</td>
<td>1.08</td>
<td><0.00 – 1.08</td>
<td>0</td>
<td>N/A</td>
<td>ppb</td>
<td>N</td>
<td>Byproduct of drinking water disinfection.</td>
</tr>
<tr>
<td>Bromodichloromethane – Dallas</td>
<td>2022</td>
<td>3.54</td>
<td>2.55 – 3.54</td>
<td>0</td>
<td>N/A</td>
<td>ppb</td>
<td>N</td>
<td>Byproduct of drinking water disinfection.</td>
</tr>
<tr>
<td>Dibromochloromethane – Dallas</td>
<td>2022</td>
<td>4.23</td>
<td>1.72 – 4.23</td>
<td>60</td>
<td>N/A</td>
<td>ppb</td>
<td>N</td>
<td>Byproduct of drinking water disinfection.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UCMR 4: Unregulated Contaminants Monitoring Rule 4</th>
<th>Collection Date</th>
<th>Highest Level Detected</th>
<th>Range of Levels Detected</th>
<th>MCLG</th>
<th>MCL</th>
<th>Units</th>
<th>Violation</th>
<th>** Likely Source of Contamination**</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAAS – Dallas</td>
<td>2020</td>
<td>11.45</td>
<td>3.22 – 19.56</td>
<td>N/A</td>
<td>60</td>
<td>ppb</td>
<td>N</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>HAA6Br</td>
<td>2020</td>
<td>6.65</td>
<td>3.36 – 8.59</td>
<td>N/A</td>
<td>N/A</td>
<td>ppb</td>
<td>N</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>HAA9</td>
<td>2020</td>
<td>16.55</td>
<td>5.66 – 25.04</td>
<td>N/A</td>
<td>N/a</td>
<td>ppb</td>
<td>N</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>Manganese (Total) – Dallas</td>
<td>2020</td>
<td>1.51</td>
<td>0.40 – 3.40</td>
<td>N/A</td>
<td>50</td>
<td>ppb</td>
<td>N</td>
<td>Naturally occurring element; commercially available in combination with other elements and minerals; used in steel production, fertilizer, batteries and fireworks; drinking water and wastewater treatment chemical; essential nutrient.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organic Contaminants</th>
<th>Collection Date</th>
<th>Highest Level Detected</th>
<th>Range of Levels Detected</th>
<th>MCLG</th>
<th>MCL</th>
<th>Units</th>
<th>Violations</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrazine – Dallas</td>
<td>2022</td>
<td>0.20</td>
<td><0.10 – 0.20</td>
<td>3.0</td>
<td>3.0</td>
<td>ppb</td>
<td>N</td>
<td>Runoff from herbicide used on row crops.</td>
</tr>
<tr>
<td>Simazine -- Dallas</td>
<td>2022</td>
<td>0.11</td>
<td><0.06 – 0.11</td>
<td>4</td>
<td>4</td>
<td>ppb</td>
<td>N</td>
<td>Runoff from herbicide used on row crops.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Organic Carbon</th>
<th>Collection Date</th>
<th>Highest Level Detected</th>
<th>Range of Levels Detected</th>
<th>Treated Water Alkalinity</th>
<th>Average Units</th>
<th>Violation</th>
<th>Likely Source of Contaminations.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Turbidity</th>
<th>Limit (Treatment Technique)</th>
<th>Level Detected</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest single measurement – Dallas</td>
<td>1.0 (TT)</td>
<td>0.27 NTU</td>
<td>N</td>
<td>Soil runoff.</td>
</tr>
<tr>
<td>Lowest monthly % meeting limit – Dallas</td>
<td><0.3</td>
<td>95%</td>
<td>N</td>
<td>Soil runoff.</td>
</tr>
</tbody>
</table>

Information Statement: Turbidity is a measurement of the cloudiness of water caused by suspended particulars. It is monitored because it is a good indicator of water quality and the effectiveness of the treatment plants filtration and disinfectant process.